Bi-Difference Sets, Order Relation, and Monoids

Ma Zhihao,¹ Wu Junde,2*,***⁴ and Lu Shijie³**

Received

Bi-difference sets generalize pseudo-difference sets and *D*-sets. Bi-difference sets automatically have an order relation if they are weaked slightly. As an application of the partially order relation, we present a characteristic of ideals in the weaked bi-difference sets. If a certain condition is satisfied then a bi-difference set becomes the union of monoids.

KEY WORDS: bi-difference sets; order; monoids.

1. INTRODUCTION

Dvurecenskij and Vetterlein in 2001 introduced an unsharp quantum logic structure and called it the *pseudo-effect algebra*, that is (Dvurecenskij and Vetterlein, 2001):

Let *PE* be a set with two special elements 0, 1, \perp be a subset of *PE* × *PE*, $\oplus: \perp \rightarrow PE$ be a binary operation, and the following axioms hold:

(PE1) $a \oplus b$, $(a \oplus b) \oplus c$ exist iff $b \oplus c$, $a \oplus (b \oplus c)$ exist, and in this case, $(a \oplus b) \oplus c = a \oplus (b \oplus c).$

(PE2) For each $a \in PE$, there is exactly one $d \in PE$, and exactly one $e \in PE$ such that $a \oplus d = e \oplus a = 1$.

(PE3) If $a \oplus b$ exists, there are elements $d, e \in PE$ such that $a \oplus b = d \oplus$ $a = b \oplus e$.

(PE4) If $1 \oplus a$ or $a \oplus 1$ exist, then $a = 0$.

Recently, Ma, Wu, and Lu introduced a new quantum logic structure and called it the *pseudo-difference set*, that is (Zhihao *et al.*, 2004):

A pseudo-difference poset is a partially ordered set $(PD, <, 0, 1)$ with a maximum element 1 and a minimum element 0, two partial binary operations Θ_l and

1355

¹ Department of Mathematics, Zhejiang University, Hangzhou, People's Republic of China.

² Department of Mathematics, Zhejiang University, Hangzhou, People's Republic of China.

³ City College, Zhejiang University, Hangzhou, People's Republic of China.

⁴ To whom correspondence should be addressed at Department of Mathematics, Zhejiang University, Hangzhou, 310027, People's Republic of China; e-mail: wjd@math.zju.edu.cn.

 \ominus_r , and $b \ominus_l a$ are defined in *PD* iff $b \ominus_r a$ is defined in *PD* iff $a \leq b$ in *PD*, and the two operations Θ_l and Θ_r satisfy the following axioms:

(PD1) $b \ominus_l a \leq b, b \ominus_r a \leq b$. $(PD2)$ $b \ominus_l (b \ominus_r a) = a, b \ominus_r (b \ominus_l a) = a.$ $(PD3)$ $(c \ominus_l b) \leq (c \ominus_l a), (c \ominus_r b) \leq (c \ominus_r a).$ $(PD4) (c \ominus_l a) \ominus_r (c \ominus_l b) = b \ominus_l a, (c \ominus_r a) \ominus_l (c \ominus_r b) = b \ominus_r a.$ (PD5) If $1 \ominus_r (1 \ominus_l b \ominus_l a)$ is defined, then there exist $d, e \in PE$ such that

 $(1 \ominus_r (1 \ominus_l b \ominus_l a)) = (1 \ominus_r (1 \ominus_l a \ominus_l d)) = (1 \ominus_r (1 \ominus_l e \ominus_l b)).$

If $1 \ominus_i (1 \ominus_r b \ominus_r a)$ is defined, then there exists $f, g \in PE$ such that

 $(1 \ominus_i (1 \ominus_r b \ominus_r a)) = (1 \ominus_i (1 \ominus_r a \ominus_r f)) = (1 \ominus_i (1 \ominus_r g \ominus_r b)).$

Moreover, Ma, Wu, and Lu proved the following very important and interesting conclusion (Zhihao *et al.*, 2004):

Pseudo-difference posets and pseudo-effect algebras are the same thing.

On the other hand, Nanasiova in 1995 introduced the *D*-set and proved some important properties (Nanasiova, 1995).

In this paper, we introduce *bi-difference sets*, which depend mainly on the conditions (PD2) and (PD4) of pseudo-difference posets and generalize the *D*sets, and prove some elementary properties of bi-difference sets. We prove also an important conclusion, that is, if the bi-difference sets are weaked slightly, then they have an order relation automatically. As an application of the partial order relation, we present a characteristic of ideals in the weaked bi-difference sets. Finally, we show that if a certain condition is satisfied, then a bi-difference set becomes the union of monoids.

2. BI-DIFFERENCE SETS

Definition 1. Let *L* be a nonempty set and \ominus_l , \ominus_r be two partial binary operations on *L*. Then the set (L, Θ_l, Θ_r) will be called a *bi-difference set* if the following conditions are satisfied:

- (BD1) For any $a \in L$, $a \ominus_l a$ and $a \ominus_r a$ are defined and they are equal, denoted as $a \ominus_r a = a \ominus_l a = 0_a$.
- (BD2) If $a \ominus_l b$ is defined, then $a \ominus_r (a \ominus_l b)$ is also defined and $a \ominus_r (a \ominus_l b)$ = *b*; if $a \ominus_r b$ is defined, then $a \ominus_l (a \ominus_r b)$ is also defined, and $a \ominus_l (a \ominus_r b) = b$.
- (BD3) If $a \ominus_l b$ and $b \ominus_l c$ are defined, then $(a \ominus_l c)$ is also defined, and $(a \ominus_l c)$ $f(c) \ominus_r (a \ominus_l b) = (b \ominus_l c);$ if $a \ominus_r b$ and $b \ominus_r c$ are defined, then $(a \ominus_r c)$ is also defined and $(a \ominus_r c) \ominus_l (a \ominus_r b) = (b \ominus_r c)$.

Lemma 1. (Zhihao *et al.*, 2004). *If* $(L, \ominus_l, \ominus_r)$ *is a bi-difference set, then*

(BD4) $c \ominus_l a \ominus_r b = c \ominus_r b \ominus_l a, c \ominus_r a \ominus_l b = c \ominus_l b \ominus_r a.$ (BD5) $(c \ominus_{l} a) \ominus_{l} (b \ominus_{l} a) = (c \ominus_{l} b), (c \ominus_{r} a) \ominus_{r} (b \ominus_{r} a) = (c \ominus_{r} b).$

Theorem 1. If $(L, \ominus_l, \ominus_r)$ is a bi-difference set, then

- (1) $a \ominus_l 0_a = a$, $a \ominus_r 0_a = a$, for all $a \in L$.
- (2) $b \ominus_i a = 0$ *iff* $a = b$, $b \ominus_i a = 0$ *iff* $a = b$.
- (3) $b \ominus_l a = b$ iff $a = 0_b$, $b \ominus_r a = b$ iff $a = 0_b$.
- (4) If $c \ominus_l a \in L$, then $0_a = 0_c = 0_{c \ominus_l a}$. If $c \ominus_r a \in L$, then $0_a = 0_c =$ $0_{c\bigoplus_{r}a}$.
- (5) If $c \ominus_l a = c \ominus_l b$, then $a = b$. If $c \ominus_r a = c \ominus_r b$, then $a = b$.
- (6) If $a \ominus_l c = b \ominus_l c$, then $a = b$. If $a \ominus_r c = b \ominus_r c$, then $a = b$.
- (7) If $c \ominus_r b$, $(c \ominus_r b) \ominus_l a \in L$, then $c \ominus_l a$, $(c \ominus_l a) \ominus_r b \in L$, and

 $c \ominus_l a \ominus_r b = c \ominus_r b \ominus_l a$.

If
$$
c \ominus_l b
$$
, $(c \ominus_l b) \ominus_r a \in L$, then $c \ominus_r a$, $(c \ominus_r a) \ominus_l b \in L$, and

$$
c \ominus_r a \ominus_l b = c \ominus_l b \ominus_r a.
$$

(8) If $c \ominus_l a = d$, then $c \ominus_r d = a$. If $c \ominus_r a = d$, then $c \ominus_l d = a$.

Proof: We only prove the first part of each conclusions, since the second part of each conclusions can be obtained dually.

- (1) Note that $a \ominus_l (a \ominus_r a) = a$, so $a \ominus_l 0_a = a$.
- (2) If $a = b$, then $b \ominus a = 0_b$. If $b \ominus a = 0_b$, it follows from (BD2) and (1) that $a = b \bigoplus_r (b \bigoplus_l a) = b \bigoplus_r 0_b = b$.
- (3) If $b \ominus a = b$, then $a = b \ominus r$ ($b \ominus a = b \ominus r$ $b = 0$ _{*b*}. The converse follows from (1) immediately.
- (4) If $c \ominus_l a \in L$, then $(c \ominus_l a) \ominus_r (c \ominus_l a) \in L$, and $0_{c \ominus_l a} = (c \ominus_l a) \ominus_r$ $(c \ominus_i a) = a \ominus_i a = 0_a$. On the other hand, note that $c \ominus_i a, c \ominus_i c \in L$, so it follows from (BD3) that $(c \ominus_l a) \ominus_r 0_c = (c \ominus_l a) \ominus_r (c \ominus_l c)$ $c \ominus_l a$, and so it follows from (3) that $0_{c \ominus_l a} = 0_c$.
- (5) It follows from $(c \ominus_{l} a) \ominus_{r} (c \ominus_{l} b) = (b \ominus_{l} a) = 0_{c \ominus_{l} b} = 0_{b}$ and (2) that $a = b$.
- (6) It follows from Lemma 1 and (4) that $(a \ominus_l c) \ominus_l (b \ominus_l c) = (a \ominus_l b)$ 0_a , so $a = b$.
- (7) It follows from (BD4) of Lemma 1 immediately.
- (8) If $c \ominus_l a \in L$ and $c \ominus_l a = d$, then $a = c \ominus_r (c \ominus_l a) = c \ominus_r d$.

3. ORDER AND IDEALS OF BI-DIFFERENCE SETS

Now, we show that if the definition of the bi-difference sets is weakened slightly, then they have order relation automatically, for simple, we assume that for all $a \in L$, 0_a is same, that is,

Let $(L, \Theta_l, \Theta_r, 0)$, where $0 \in L$ be constant, and Θ_l, Θ_r be partial binary operations on *L* satisfy:

(WBD1) For any $a \in L$, $a \ominus_l a$ and $a \ominus_r a$ are defined and $a \ominus_l a = 0 = a \ominus_r a$. (WBD2) If $a \ominus_i b$ is defined, then $a \ominus_i (a \ominus_i b)$ is also defined and $(a \ominus_i (a \ominus_i b))$ b) \ominus_r $b = 0$; if $a \ominus_r b$ is defined, then $(a \ominus_r (a \ominus_l b) \ominus_l b = 0$.

- (WBD3) If $a \ominus_l b$ and $b \ominus_l c$ are defined, then $(a \ominus_l c)$ is also defined, and $((a \ominus_{l} c) \ominus_{r} (a \ominus_{l} b)) \ominus_{l} (b \ominus_{l} c) = 0, ((a \ominus_{l} c) \ominus_{r} (a \ominus_{l} b)) \ominus_{r} (b \ominus_{l} c) = 0;$ if $a \ominus_r b$ and $b \ominus_r c$ are defined, then $(a \ominus_r c)$ is also defined and $((a \ominus_r c) \ominus_t c)$ $(a \ominus_r b)) \ominus_l (b \ominus_r c) = 0$, $((a \ominus_r c) \ominus_l (a \ominus_r b)) \ominus_r (b \ominus_r c) = 0$.
- (WBD4) If $a \ominus_i b = b \ominus_j a = 0$, then we must have $a = b$, where $i, j = l, r$. Then $(L, \Theta_l, \Theta_r, 0)$ is said to be a *weak bi-difference set*.

Now, we present two examples of weak bi-different sets:

Example 1. Let *X* be a nonempty set and its power set be denoted by $\mathcal{P}(X)$, Ø be the empty set. Define $A \ominus_i B = A \ominus_i B = \emptyset$ if $A \subseteq B$, otherwise $A \ominus_i B =$ $A \ominus_r B = A - B.$

Then it is easily to prove that $(\mathcal{P}(X), \ominus_l, \ominus_r, \emptyset)$ is a weak bi-different set.

Example 2. Let *L* be the set of all non-negative integers. If $a \leq b$, we define $a \ominus_i b = a \ominus_r b = 0$, otherwise we define $a \ominus_i b = a \ominus_r b = a - b$. Then $(L, \Theta_l, \Theta_r, 0)$ is also a weak bi-different set.

From the definition of weak bi-different sets, we may prove:

(WBD5) If $a \ominus_l 0 = 0$, then $a = 0$; if $a \ominus_r 0 = 0$, then $a = 0$. (WBD6) For any $a \in L$, $a = a \ominus_l 0 = a \ominus_r 0$.

Theorem 2. *Let* $(L, \ominus_l, \ominus_r, 0)$ *be a weak bi-difference set, a, b* \in *L. If we define a* relation \leq on $(L, \ominus_l, \ominus_r, 0)$ by $a \leq b$ iff $a \ominus_l b$ and $a \ominus_r b$ are defined and $a \ominus_i b = a \ominus_r b = 0$, then the relation \leq *is an order relation.*

Proof: It follows from $a \ominus_l a = a \ominus_r a = 0_a$ that $a \leq a$.

If $a \leq b, b \leq a$, then $a \ominus_l b, a \ominus_r b, b \ominus_l a, b \ominus_r a$ are defined and they are all 0, so from (WBD4) that $a = b$.

If $a \leq b, b \leq c$, so $a \ominus_l b = 0, a \ominus_r b = 0, b \ominus_l c = 0, b \ominus_r c = 0$. On the other hand, it follows from (WBD3) and (WBD6) that $a \ominus_l c$, $a \ominus_r c$ are also 0, so $a \leq c$. Thus, \leq is a order relation, the theorem is proved.

Now, by using the order relation of above, we present an interesting characteristic of ideals in the weak bi-difference set. At first, we need the following (Meng and Jun, 1994):

Let $(L, \ominus_l, \ominus_r, 0)$ be a weak bi-difference set, *I* be a nonempty subset of *L*. If

 $(II) 0 \in I.$ $(I2)$ $x \ominus_l y \in I$, $y \in I$ imply $x \in I$, $x \ominus_r y \in I$, $y \in I$ imply $y \in I$.

Then *I* is said to be an *ideal* of $(L, \Theta_l, \Theta_r, 0)$.

Lemma 2. *Let I be an ideal of* $(L, \Theta_l, \Theta_r, 0)$ *and* $x \in I$ *. If* $y \leq x$ *, then* $y \in I$ *.*

In fact, $y \le x$ implies $y \ominus_l x = 0 \in I$. From $x \in I$ and (I2) that $y \in I$.

Theorem 3. *Let* $(L, \Theta_l, \Theta_r, 0)$ *be a weak bi-difference set,* $I \subseteq L$ *, and* $0 \in I$ *.* Denote $A_l(x, y) = \{a : a \in L, a \ominus_l x \leq y\}, A_r(x, y) = \{a : a \in L, a \ominus_r x \leq y\}.$ *Then I is an ideal of* (L, Θ_l, Θ_r) *iff for* $\forall x, y \in I$, $A_l(x, y) \subseteq I$, $A_r(x, y) \subseteq I$.

Proof: \Rightarrow If $z \in A_i(x, y)$, $i = l, r$, we get $(z \ominus_i x) \leq y, y \in I, i = l, r$, it follows from Lemma 2 that $(z \ominus_i x) \in I$, $x \in I$, $i = l$, r , so by the definition of ideals that $z \in I$.

⇐. If *Ai*(*x*, *y*) ⊆ *I*, ∀*x*, *y* ∈ *I*, *i* = *l*, *r*. Let (*z ⁱ y*) ∈ *I*, *y* ∈ *I*, *i* = *l* or *i* = *r*, note that $(z \ominus_r (z \ominus_l y)) \leq y$, $(z \ominus_l (z \ominus_r y)) \leq y$, so by the definition of A_l and *A_r* that $z \in A_i((z \ominus y), y) \subseteq I$, $i = l, r$, that is, *I* is an ideal of *L*.

4. BI-DIFFERENCE SETS AND MONOIDS

As we knew, the monoids is a very important algebra concept (Jacobson, 1974, p. 28). Now, we show that if a certain condition is satisfied, then each bi-difference set can become into the union of a family of monoids.

Lemma 3. *Let L be a bi-difference set,* $a, b \in L$ *and* $0_b \ominus_r b, 0_b \ominus_l b \in L$. Then $a \ominus_l (0_b \ominus_r b) \in L$ *iff* $a \ominus_l b \in L$.

Proof: If $a \ominus_l b \in L$, then $0_a = 0_b$. Note that $0_b \ominus_l (0_b \ominus_r b) = b$, we get $(a \ominus_r b) = b$ $a) \ominus_l (0_b \ominus_r b) \in L$. Thus, it follows from Lemma 1 that $a \ominus_l (0_b \ominus_r b) \in L$.

If $a \ominus_l (0, l \ominus_r b) \in L$, it follows from Theorem 1 (4) that $(0, l \ominus_r b) \ominus_l$ $0_{0_b \oplus_b b} = (0_b \oplus_r b) \oplus_l 0_b \in L$, so by (BD3) we get $a \oplus_l 0_b \in L$. Note that $0_b \oplus_l 0_b$ *b* ∈ *L*, it follows from (BD3) again that $a \ominus_l b \in L$.

Now, we can define the partial operation \oplus on the bi-difference set as follows: If $0_b \ominus_r b \in L$, $0_b \ominus_l b \in L$, and $a \ominus_l b \in L$, then we define $a \oplus b := a \ominus_l$ $(0_b \ominus_r b).$

The following concepts are necessary in this section:

Definition 2. (Jacobson, 1974). A monoid is a triple $(M, p, 1)$ in which M is a nonempty set, *p* is an associative binary operation in *M*, and 1 is an element of *M* such that $p(1, a) = a = p(a, 1)$ for all $a \in M$, the element 1 is called the unit of (*M*, *p*, 1).

Definition 3. A bi-difference set *L* is said to be a monoid bi-difference set if the following condition is satisfied:

(BD6) $a \ominus_l b \in L$ iff $b \ominus_r a \in L$. $a \ominus_r b \in L$ iff $b \ominus_l a \in L$.

Lemma 4. *If L is a monoid bi-difference set, then the following conclusions hold:*

- (1) *For any* $a \in L$, $0_a \oplus_l a \in L$, $0_a \oplus_r a \in L$.
- (2) *For* $a, b \in L$, $a \ominus_l b \in L$ *iff* $a \ominus_r b \in L$ *iff* $0_a = 0_b$.
- (3) If $a \ominus_l b \in L$, then $a \ominus_l b = 0$, $\ominus_r (b \ominus_l a)$; if $a \ominus_r b \in L$, then $a \ominus_r a$ $b = 0_a \ominus_l (b \ominus_r a)$.

Proof: We only prove the first part of each conclusion.

- (1) Let $a \in L$. It follows from Theorem 1 that $a \ominus_r 0_a \in L$, note that from (BD6) we have $0_a \ominus_l a \in L$.
- (2) It follows from Theorem 1 that if $a \ominus_l b \in L$, then $0_a = 0_b = 0_{a \ominus_l b}$. On the other hand, let $0_a = 0_b$. It follows from $a \ominus_l 0_a, 0_b \ominus_l b \in L$ and (BD3) that $a \ominus_l b \in L$.
- (3) Let $a \ominus_l b \in L$. Then $0_a = 0_b$ and $0_a = a \ominus_l a = b \ominus_l b$. So $0_a \ominus_r (b \ominus_l a)$ $a) = (b \ominus_l b) \ominus_r (b \ominus_l a) = a \ominus$ \Box *b*.

Theorem 4. If L is a monoid bi-difference set, then $(G(a), \oplus, 0_a) = \{b : b \in L$ *and* $0_b = 0_a$ *is a monoid,* 0_a *is the unit element, and each* $b \in L$ *has the left inverse and the right inverse.*

Proof: It follows from Lemma 4 easily that $0_a \in G(a)$. If $b \in L$, then $b \oplus 0_a =$ $b \ominus_l (0_a \ominus_r 0_a) = b \ominus_l (0_a) = b \ominus_l (0_b) = b$. Similar, we have $0_a \oplus b = b$. So 0_a is a unit element of $(G(a), \oplus, 0_a)$.

Now, we prove the associative law of the operation $oplus$ as follows:

Let $a, b, c \in G(a)$. Then it follows easily from Lemma 3 and Lemma 4 that $(a \oplus b) \oplus c \in G(a)$. Denote $A = (a \oplus b) \oplus c = a \ominus_l (0_b \ominus_r b) \ominus_l (0_c \ominus_r c)$. It follows from Theorem 1 (7) that $A \ominus_r a = a \ominus_l (0_b \ominus_r b) \ominus_l (0_c \ominus_r c) \ominus_r a =$ $0_a \ominus_l (0_b \ominus_r b) \ominus_l (0_c \ominus_r c) = b \ominus_l (0_c \ominus_r c).$

Denote $C = b \ominus_l (0_c \ominus_r c), B = a \oplus (b \oplus c) = a \ominus_l (0_{b \oplus c} \ominus_r [b \ominus_l (0_c \ominus_r$ *c*)]). Then it follows from 0*^a* = 0*^b* [⊕] *^c* that *B ^r a* = *a ^l* (0*^b* [⊕] *^c ^r* [*b ^l* (0*^c* $(\Theta_r c)$] $(\Theta_r a = 0_a \Theta_l (0_b \oplus c \Theta_r [b \Theta_l (0_c \Theta_r c)]) = b \Theta_l (0_c \Theta_r c) = C$.

So we get that $A = B$. Thus $(G(a), \oplus, 0_a)$ satisfies the associative law.

Let $b \in G(a)$ and denote $b^- := 0_a \ominus_l b$. Note that $b \oplus b^- = b \ominus_l [0_a \ominus_r$ $(0_a \ominus_l b)$] = $0_b = 0_a$, so the right inverse of $b \in G(a)$ is b^- . Similar, the left inverse of $b \in G(a)$ is $b^{\sim} := 0_a \ominus_r b$.

Thus, we proved that $(G(a), \oplus, 0_a)$ is a monoid and has the left inverse and right inverse for each *b* ∈ *G*(*a*).

The main result in this section is the following:

Theorem 5. *If L is a monoid bi-difference set, then L can be written as disjoint union of monoids* $\{(T_\alpha, \oplus_\alpha, 0_\alpha)\}_{\alpha \in \Gamma}$ *such that each element* $a \in (T_\alpha, \oplus_\alpha, 0_\alpha)$ *has the left inverse and the right inverse. Conversely, if L is the disjoint union of monoids* $\{(T_\alpha, \bigoplus_{\alpha}, 0_\alpha)\}_{\alpha \in \Gamma}$ *and each element* $a \in (T_\alpha, \bigoplus_{\alpha}, 0_\alpha)$ *has the left inverse and the right inverse, then L is a monoid bi-difference set.*

Proof: The first part of Theorem 5 follows from Theorem 4 immediately.

Conversely, let $\{(T_\alpha, \oplus_\alpha, 0_\alpha)\}_\alpha \in \Gamma$ be a family of disjoint monoids and for each element $a \in (T_\alpha, \oplus_\alpha, 0_\alpha)$ has the right inverse a^- and the left inverse a^\sim . Denote $T = \bigcup_{\alpha \in \Gamma} T_{\alpha}$.

First, we define a partial binary operation \oplus on T :

 $a \oplus b \in T$ iff there exists $\alpha \in \Gamma$ such that $a, b \in T_{\alpha}$ and define $a \oplus b =$ $a \oplus_{\alpha} b$.

Next, let us define two partial binary operations Θ_l and Θ_r on *T*:

 $a \ominus_i b \in T$ iff there exists $\alpha \in \Gamma$ with $a, b \in T_\alpha$ and $a \ominus_i b = a \oplus b^-; a \ominus_i r$ *b* ∈ *T* iff there exists $\alpha \in \Gamma$ with $a, b \in T_{\alpha}$ and $a \ominus_r b = b^{\sim} \oplus a$.

Finally, we show that (T, Θ_r, Θ_l) is a monoid bi-difference set.

If $a \in T$, then there is $\alpha \in \Gamma$ such that $a \in T_\alpha$. Note that $(T_\alpha, \bigoplus_{\alpha} , 0_\alpha)$ is a monoid with the left inverse and the right inverse for each element of $(T_\alpha, \oplus_\alpha, 0_\alpha)$, so we have $0_{\alpha} = a \oplus a^{-} = a^{\sim} \oplus a = a \ominus_{l} a = a \ominus_{r} a = 0_{a} \in T$. This showed that (BD1) holds and for each $a \in (T_\alpha, \bigoplus_\alpha, 0_\alpha)$, we have $0_a = 0_\alpha$.

If $a, b \in T$ and $a \ominus_i b$ is defined. It follows from the definitions of $a \ominus_i b$ and $(T_\alpha, \bigoplus_{\alpha} 0_\alpha)$ that there is $\alpha \in \Gamma$ such that $a, b, a^-, b^-, a^\sim, b^\sim \in T_\alpha$ and $a \ominus_b b =$ $a \oplus_{\alpha} b^{-}$, $b \ominus_{l} a = b \oplus_{\alpha} a^{-}$, $a^{\sim} \oplus_{\alpha} b = b \ominus_{r} a \in T_{\alpha}$. This showed that $b \ominus_{r} a \in$ *T* . By using the same methods, we may prove that if $b \ominus_r a \in T$, then $a \ominus_l b \in T$. So (BD6) holds.

Let $a \ominus_i b \in T$. It follows from the proof process of above that there exists $\alpha \in \Gamma$ such that

$$
(b^{\sim} \oplus_{\alpha} a) \oplus_{\alpha} (a^{-} \oplus_{\alpha} b) = 0_{\alpha},
$$

and

$$
(a\oplus_{\alpha}b^{\sim})\oplus_{\alpha}(b\oplus_{\alpha}a^{-})=0_{\alpha}.
$$

So we get that:

$$
(b^{\sim} \oplus_{\alpha} a)^{-} = a^{-} \oplus_{\alpha} b,
$$

$$
(b \oplus_{\alpha} a^{-})^{\sim} = a \oplus_{\alpha} b^{\sim}.
$$

These imply that

$$
a \ominus_1 (a \ominus_r b) = a \oplus_\alpha (b^\sim \oplus_\alpha a)^- = a \oplus_\alpha (a^- \oplus_\alpha b) = b,
$$

and

$$
a\ominus_r(a\ominus_l b)=b.
$$

That is, (BD2) is proved.

Let $a \ominus_i b$, $b \ominus_i c \in T$. Then it is easy to prove that there exists $\alpha \in \Gamma$ such that $a, b, c \in T_\alpha$. Moreover,

$$
(a \ominus_l c) \ominus_r (a \ominus_l b) = (a \oplus_{\alpha} c^{-}) \ominus_r (a \oplus_{\alpha} b^{-}) = (a \oplus_{\alpha} b^{-})^{\sim} \oplus_{\alpha} (a \oplus_{\alpha} c^{-})
$$

$$
= b \oplus_{\alpha} a^{\sim} \oplus_{\alpha} a \oplus_{\alpha} c^{-} = b \oplus_{\alpha} c^{-}
$$

$$
= b \ominus_l c.
$$

Similarly, we get that

$$
(a\ominus_r c)\ominus_l(a\ominus_r b)=b\ominus_r c.
$$

Thus (BD3) is proved and *T* is a monoid bi-difference set. \square

ACKNOWLEDGMENT

This project is supported by Natural Science Fund of Zhejiang Province of China in 2004 (M103057).

REFERENCES

Dvurecenskij, A. and Vetterlein, T. (2001). Pseudoeffect algebras (I). Basic properties. *International Journal of Theoretical Physics* **40**, 685–701.

Jacobson, N. (1974). *Basic Algebra I*, W. H. Freeman and Company.

Meng, J. and Jun, Y. B. (1994). *BCK – Algebras*, Kyung Moon Sa Co.

Nanasiova, O. (1995). *D*-set and groups. *International Journal of Theoretical Physics* **34**, 1637–1642.

Zhihao, Ma, Junde, Wu, and Shijie, Lu (2004). Pseudo-Effect algebras and pseudo-Difference posets. *International Journal of Theoretical Physics* **43**(6), 1355–1362.